
Frequentist Inference

The topics of the next three sections are useful applications of the
Central Limit Theorem. Without knowing anything about the under-
lying distribution of a sequence of random variables {Xi}, for large
sample sizes, the CLT gives a statement about the sample means. For
example, if Y is a N(0, 1) random variable, and {Xi} are distributed
iid with mean µ and variance σ2, then

P
( X̄− µ

σ/
√

n
∈ A

)
≈ P(Y ∈ A)

In particular, if we want an interval in which Y lands with probability
0.95, we look online or in a book for a z table, which will tell us that
for a N(0, 1) random variable Y,

P(Y ∈ (−1.96, 1.96)) = P(−1.96 ≤ Y ≤ 1.96) = 0.95

Since X̄−µ

σ/
√

n is nearly N(0, 1) distributed, this means

P
(
− 1.96 ≤ X̄− µ

σ/
√

n
≤ 1.96

)
= 0.95

From the above statement we can make statements about experi-
ments in order to quantify confidence and accept or reject hypothe-
ses.

Confidence Intervals

Suppose that during the presidential election, we were interested in
the proportion p of the population that preferred Hillary Clinton to
Donald Trump. It wouldn’t be feasible to call every single person in
the country and write down who they prefer. Instead, we can take a
bunch of samples, X1, . . . , Xn where

Xi =

1 if person i prefers Hillary

0 otherwise
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Then the sample mean X̄ = 1
n ∑n

i=1 Xi is the proportion of our sample
that prefers Hillary. Let p be the true proportion that prefer Hillary
(p is not known). Note that EX̄ = p, since each Xi is 1 with probabil-
ity p and 0 with probability 1− p. Then by the CLT,

X̄− p
σ/
√

n
∼ N(0, 1)

Since we don’t know the true value of σ, we estimate it using the
sample variance, defined

S2 .
=

1
n− 1

n

∑
i=1

(Xi − X̄)2

This is a consistent estimator for σ2, so for large n, the probability
that it differs greatly from the true variance σ2 is small. Hence we

can replace σ in our expression with S =
√

1
n−1 ∑n

i=1(Xi − X̄)2. Since
X̄−p

S/
√

n is approximately N(0, 1) distributed, we have

P
(
− 1.96 ≤ X̄− p

S/
√

n
≤ 1.96

)
= 0.95

Rearranging the expression for p, we have

P
(
− 1.96 · S√

n
≤ X̄− p ≤ 1.96 · S√

n

)
= 0.95

⇒ P
(
− 1.96 · S√

n
− X̄ ≤ −p ≤ 1.96 · S√

n
− X̄

)
= 0.95

⇒ P
(

1.96 · S√
n
+ X̄ ≥ p ≥ X̄− 1.96 · S√

n

)
= 0.95

Even though we do not know the true value for p, we can conclude
from the above expression that with probability 0.95, p is contained
in the interval (

X̄− 1.96 · S√
n

, X̄ + 1.96 · S√
n

)
This is called a 95% confidence interval for the parameter p. This
approximation works well for large values of n, but a rule of thumb
is to make sure n > 30 before using the approximation.

On the website, there is a confidence interval visualization. Try se-
lecting the Uniform distribution to sample from. Choosing a sample
size of n = 30 will cause batches of 30 samples to be picked, their
sample means computed, and their resulting confidence intervals
displayed on the right. Depending on the confidence level picked
(the above example uses α = 0.05, so 1− α = 0.95), the generated
confidence intervals will contain the true mean µ with probability
1− α.
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Hypothesis Testing

Let’s return to the example of determining voter preference in the
2016 presidential election. Suppose we suspect that the proportion of
voters who prefer Hillary Clinton is greater than 1

2 , and that we take
n samples, denoted {Xi}n

i=1 from the U.S. population. Based on these
samples, can we support or reject our hypothesis that Hillary Clin-
ton is more popular? And how confident are we in our conclusion?
Hypothesis testing is the perfect tool to help answer these questions.

Constructing a Test

A hypothesis in this context is a statement about a parameter of in-
terest. In the presidential election example, the parameter of interest
was p, the proportion of the population who supported Hillary Clin-
ton. A hypothesis could then be that p > 0.5, i.e. that more than half
of the population supports Hillary.

There are four major components to a hypothesis test.

1. The alternative hypothesis, denoted Ha, is a claim we would like to
support. In our previous example, the alternative hypothesis was
p > 0.5.

2. The null hypothesis, denoted H0 is the opposite of the alternative
hypothesis. In this case, the null hypothesis is p ≤ 0.5, i.e. that less
than half of the population supports Hillary.

3. The test statistic is a function of the sample observations. Based on
the test statistic, we will either accept or reject the null hypothesis.
In the previous example, the test statistic was the sample mean
X̄. The sample mean is often the test statistic for many hypothesis
tests.

4. The rejection region is a subset of our sample space Ω that de-
termines whether or not to reject the null hypothesis. If the test
statistic falls in the rejection region, then we reject the null hypoth-
esis. Otherwise, we accept it. In the presidential election example,
the rejection region would be

RR: {(x1, . . . , xn) : X̄ > k}

This notation means we reject if X̄ falls in the interval (k, ∞),
where k is some number which we must determine. k is deter-
mined by the Type I error, which is defined in the next section.
Once k is computed, we reject or accept the null hypothesis de-
pending on the value of our test statistic, and our test is complete.
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Types of Error

There are two fundamental types of errors in hypothesis testing.
They are denoted Type I and II error.

Definition 0.0.16. A Type I error is made when we reject H0 when it is in
fact true. The probability of Type I error is typically denoted as α.

In other words, α is the probability of a false positive.

Definition 0.0.17. A Type II error is made when we accept H0 when it is
in fact false. The probability of Type II error is typically denoted as β.

In other words, β is the probability of a false negative.
In the context of hypothesis testing, α will determine the rejection

region. If we restrict the probability of a false positive to be less than
0.05, then we have

P(X̄ ∈ RR | H0) ≤ 0.05

i.e. our test statistic falls in the rejection region (meaning we reject
H0), given that H0 is true, with probability 0.05. Continuing along
our example of the presidential election, the rejection region was of
the form X̄ > k, and the null hypothesis was that p ≤ 0.5. Our above
expression then becomes

P(X̄ > k | p ≤ 0.5) ≤ 0.05

If n > 30, we can apply the CLT to say,

P(
X̄− p
S/
√

n
>

k− p
S/
√

n
| p ≤ 0.5) = P(Y >

k− p
S/
√

n
| p ≤ 0.5)

where Y is a N(0, 1) random variable. Since p ≤ 0.5 implies k−p
S/
√

n ≥
k−0.5
S/
√

n , we must also have

Y >
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S/
√

n
⇒ Y >
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S/
√

n

Hence,

P(Y >
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S/
√

n
| p ≤ 0.5) ≤ P(Y >

k− 0.5
S/
√

n
)

So if we bound the probability on the right side of the inequality by
0.05, then we also bound the probability on the left (the Type I error,
α) by 0.05. Since Y is distributed N(0, 1), we can look up a z table to
find that z0.05 = −1.64, so

P(Y > 1.64) = P(Y < −1.64) = 0.05
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Letting k−0.5
S/
√

n = 1.64, we can solve for k to determine our rejection
region.

k = 0.5 + 1.64 · S√
n

Since our rejection region was of the form X̄ > k, we simply check
whether X̄ > 0.5 + 1.64 · S√

n . If this is true, then we reject the null,
and conclude that more than half the population favors Hillary Clin-
ton. Since we set α = 0.05, we are 1− α = 0.95 confident that our
conclusion was correct.

In the above example, we determined the rejection region by plug-
ging in 0.5 for p, even though the null hypothesis was p ≤ 0.5. It is
almost as though our null hypothesis was H0 : p = 0.5 instead of
H0 : p ≤ 0.5. In general, we can simplify H0 and assume the border
case (p = 0.5 in this case) when we are determining the rejection
region.
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p-Values

As we saw in the previous section, a selected α determined the re-
jection region so that the probability of a false positive was less than
α. Now suppose we observe some test statistic, say, the sample pro-
portion of voters X̄ who prefer Hillary Clinton. We then ask the
following question. Given X̄, what is the smallest value of α such
that we still reject the null hypothesis? This leads us to the following
definition.

Definition 0.0.18. The p-value, denoted p, is defined

p = min{α ∈ (0, 1) : Reject H0 using an α level test}

i.e. the smallest value of α for which we still reject the null hypothesis.

This definition isn’t that useful for computing p-values. In fact,
there is a more intuitive way of thinking about them. Suppose we
observe some sample mean X̄1. Now suppose we draw a new sample
mean, X̄2. The p-value is just the probability that our new sample
mean is more extreme than the one we first observed, assuming the
null hypothesis is true. By “extreme” we mean, more different from
our null hypothesis.

Below we go through an example which verifies that the intuitive
definition given above agrees with Definition 5.3.

Example 0.0.10. Suppose that we sampled n people and asked which can-
didate they preferred. As we did before, we can represent each person as an
indicator function,

Xi =

1 if person i prefers Hillary

0 otherwise

Then X̄ is the proportion of the sample that prefers Hillary. After taking
the n samples, suppose we observe that X̄ = 0.7. If we were to set up a
hypothesis test, our hypotheses, test statistic, and rejection region would be

H0 : q ≤ 0.5

Ha : q > 0.5

Test statistic: X̄

RR: {(x1, . . . , xn) : X̄ > k}

where q is the true proportion of the entire U.S. population that favors
Hillary. Using the intuitive definition, the p value is the probability that
we observe something more extreme than 0.7. Since the null hypothesis is
that q ≤ 0.5, “more extreme” in this case means, “bigger than 0.7”. So the
p-value is the probability that, given a new sample, we observe the new X̄ is
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greater than 0.7, assuming the null, i.e. that q ≤ 0.5. Normalizing X̄, we
have

P(X̄ > 0.7 | H0) = P
( X̄− 0.5

S/
√

n
>

0.7− 0.5
S/
√

n

)
≈ P

(
Y >

0.7− 0.5
S/
√

n

) .
= p

(4)

where Y ∼ N(0, 1). We would then compute the value zp
.
= 0.7−0.5

S/
√

n by
plugging in the sample standard deviation, S, and the number of samples we
took, n. We would then look up a z table and find the probability correspond-
ing to zp, denoted p (this is our p value).

We now claim that this p is equal to the smallest α for which we reject
the null hypothesis, i.e. that our intuitive definition of a p-value agrees with
Definition 5.3. To show that

p = min{α ∈ (0, 1) : Reject H0 using an α level test},

we need to show that for any α < p, we accept the null hypothesis. We also
need to show that for any α ≥ p, we reject the null hypothesis.

Case 1: Suppose α < p. We need to show that the test statistic X̄ = 0.7
falls in the acceptance region determined by α. Using a z table, we could
find zα such that

α = P(Y > zα) ≈ P(
X̄− 0.5
S/
√

n
> zα | H0) = P(X̄ > zα ·

S√
n
+ 0.5 | H0)

Since the RHS of the above expression is the probability of Type I error, the
rejection region is determined by

X̄ > kα
.
= zα ·

S√
n
+ 0.5

Since α < p, the corresponding zp such that p = P(Y > zp) satisfies
zp < zα. By the RHS of expression (1),

p = P
(

Y >
0.7− 0.5

S/
√

n

)
which implies zp = 0.7−0.5

S/
√

n ⇒ zp · S√
n + 0.5 = 0.7. This implies that

0.7 = zp ·
S√
n
+ 0.5 < zα ·

S√
n
+ 0.5 = kα

Therefore X̄ = 0.7 < kα implies X̄ = 0.7 is in the acceptance region
determined by α. Hence, we accept the null hypothesis for any α < p.

Case 2: Suppose α ≥ p. We need to show that the test statistic X̄ = 0.7
falls in the rejection region determined by α. By reasoning similar to the
kind in Case 1, we would have zα ≤ zp. This implies

kα
.
= zα ·

S√
n
+ 0.5 ≤ zp ·

S√
n
+ 0.5 = 0.7

Hence X̄ = 0.7 ≥ kα implies that X̄ = 0.7 is in the rejection region
determined by α. Hence, we reject the null hypothesis for any α ≥ p.
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Example 5.4 (above) justifies the definition of p-values which gives
an easy way to compute them. Given some observation of our test
statistic X̄, we compute the p-value by calculating the probability of
seeing something more different or “extreme" than our observed X̄,
assuming H0 is true. By the argument in Example 5.4, this value is
the same as the smallest α level for which we reject H0.
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